Using CERES Observations to Help Correcting Cloud 3D Radiative Effects on MODIS AOT Retrieval in the Vicinity of Clouds: A Case Study

Guoyong Wen¹, Alexander Marshak², Robert Cahalan², Norman Loeb³, Lorraine Remer²

¹University of Maryland, Baltimore County

²NASA Goddard Space Flight Center

³NASA Langley Research Center

Clear areas near clouds

Motivation:

- Help satellite studies of aerosol-cloud interactions
- Aerosol remote sensing near clouds is challenging
- Excluding areas near-cloud risks biases in aerosol data

All oceans between 60°N and 60°S

from MODIS: 60% of all clear sky pixels are located 5 km or less from all clouds

Distance to nearest cloud (km)

from CALIPSO: 50% of all clear sky pixels are located 5 km or less from low clouds

CALIOP vs. MODIS cloud mask

Behavior is similar using either cloud mask Daytime data over oceans during April 2007

3-D: MODIS vs. CALIPSO

MODIS: 3D enhancement

CALIPSO: no 3D enhancement

Simple Model for correction of 3D Radiative Effects

Inputs

- τ_m Rayleigh scattering
- F_{NB} upward flux

CERES obs can help to get F_{NB}

Two-layer model

$$R_{\text{COR}} = R_{\text{MODIS}} - \Delta R$$

 $\Delta R = \Delta R(\tau_{\text{m}}, F_{\text{NB}})$

$$\Delta R = 0$$
 if $F_{NB} = F_{NB_clear}$

Marshak et al. (2008)

Application to Aqua MODIS

Plane-Parallel Bias

Linearity between NB and BB

How Can CERES Help?

Assume

$$\frac{F_{obs}^{NB}}{F_{obs}^{BB}} \approx \frac{F_{mod}^{NB}}{F_{mod}^{BB}} \text{ or }$$

CERES

$$F_{obs}^{NB} \approx \frac{F_{obs}^{BB}}{F_{mod}^{BB}} \cdot F_{mod}^{NB}$$

RT model (τ , f, r_e) Correlated-k for BB Ocean BRDF Input from CERES

Consistency Check

Check the assumption for radiance

$$\frac{F_{obs}^{NB}}{F_{obs}^{BB}} \approx \frac{F_{mod}^{NB}}{F_{mod}^{BB}}$$

Radiance

BB to NB Conversion

$$F_{obs}^{NB} \approx \frac{F_{obs}^{BB}}{F_{mod}^{BB}} \cdot F_{mod}^{NB}$$

Application to Aqua MODIS

MODIS Re

NB Albedo vs MODIS AOT

NB Albedo

NB ALBEDO 163.0 163.5 164.0 164.5 165.0 165.5 166.0 0.49 -30.5 0.44 -31.0 0.40 0.36 Latitude (degrees) -31.5 0.32 0.28 -32.0 0.24 0.20 -32.5 0.16 0.12 -33.0 164.0 164.5 165.0 165.5 166.0 166.5 Longitude (degrees)

Albedo= $F \Lambda / (F_0 * \cos(\theta_0))$ F \(Derived

MODIS AOT

Average AOT ~0.13

Original (0.47µm)

Corrected (0.47µm)

Less corrections at longer wavelengths

Less corrections at longer wavelengths

Summary

- CERES observations can be used to correct MODIS AOT retrievals for cloud 3D radiative effects.
- Larger corrections (0.05-0.1) are for shorter wavelength.
- Corrections for longer wavelengths (e.g., 0.86 and 2.13 microns) are small.
- Validation of the correction algorithm is needed.

CERES ADM Adjusted NB Albedo

1D model underestimates upward flux for optically thin and overestimate upward flux for large optically thick clouds

Modeled SW TOA Radiance

Modeled upward SW flux for water clouds $\,\theta_{\,0}$ =45°

Fig. 2. TOA flux against $\ln(f\tilde{\tau})$ for liquid water clouds at $\theta_o = 44^{\circ}-46^{\circ}$. Loeb et al, 2005

Broadband and Narrowband ADMs

CERE Flux cannot be directly used since ADM(BB) ≠AMD(NB)